Posts Tagged 'Automation'

A Comparison of DC Linear Actuators with DC Linear Motors

New article from maxon motors

Factory automation and robotic application engineers are often faced with the challenge of requiring fast, accurate and powerful linear actuation within a small allocated volume.  The two most commonly available technologies are rotary DC motor driven actuators and linear DC motor actuators.  This article provides details on the advantages and disadvantages with all technologies. 

Click on the link below to download the article.

http://www.electromate.com/db_support/downloads/Maxon-DC-actuators-vs-DC-motors.pdf

 

Tags:  maxon, maxon motor, maxon DC motor, Electromate, servo motor, BLDC motor, brushless motor, flat motor, pancake motor, automation, electric motor, motion control, linear actuator, linear motor

 

 

Evolution of Ethernet in Control Systems. A New White Paper from Galil

Authors:  Robin Riley, Ann Keffer, Wayne Baron  Galil Motion Control

Ethernet was developed in the 1970’s and was started being used commercially in the 1980’s.   By the end of the 1980’s it was the dominant network technology.  It was initially used to connect computer systems and peripherals in a Local Area Network (LAN) and quickly evolved to be the protocol used for Wide Area Networks (WAN).  Then came the world-wide web and the incorporation of the internet into every aspect of communication.

In the mid to late 1990’s, Ethernet’s popularity spread to control systems.  The engineering team here at Galil Motion Control determined Ethernet was a viable protocol in 1999 and introduced its first Ethernet Motion Controller.  Even today, Ethernet is the most popular method of network communication in control systems.

Before Ethernet

Before Ethernet was considered viable for control systems, several other communication protocols were popular.

  • Bus-based communication was used when the controller lived within the computer. This solution was often cumbersome because the computer had to be large enough to house the motion controller, and the computer had to be and very close to the often noisy, dirty machine.
  • Daisy-Chain serial communication allows for distributed systems. The network was a series of controllers with a master. The master transmitted packets to the first device. The first device read the packet address, kept the packet if appropriate, or sent it on if it was addressed to another controller. This solution was very slow at the typical 9600 baud rate.
  • RS-485 multi-drop allowed data to be received by multiple motion controllers at the same time, but the speed was also slow, and the packet size was small.
  • Various proprietary serial communication networks became popular. These protocols were useful when data was short, repetitive and simple. Some of them are still used in some control systems today.
  • Proprietary serial communication protocols such as CANOpen, Profibus, MultiNet and DeviceNet were developed because motion control systems needed more intelligence than bus-based and primitive serial networks could provide. The protocols needed to be able to take advantage of increasingly capable motion system hardware. Because these protocols were proprietary and part of a ‘turn-key’ solution, they were also expensive and created a barrier to migration. Customers were locked into a single hardware and software vendor and support for these solutions had to come straight from the supplier.

By the 1990’s, Ethernet provided an alternative to proprietary bus communication because it was scalable, affordable, and flexible.  Ethernet became ubiquitous…

Click on the link below to download the entire White Paper.

http://www.electromate.com/db_support/downloads/EvolutionofEthernetinControlSystemsWhitePaper.pdf

To view a 57 minute pre-recorded webinar on this topic, click on the link below-

 

Click on the link below for information on Galil’s Motion Controller Family-

Galil’s Motion Controller Family

For more information, please contact:

EDITORIAL CONTACT:
Warren Osak
sales@electromate.com
Toll Free Phone:   877-737-8698
Toll Free Fax:       877-737-8699
www.electromate.com

 

Tags:  Ethernet, Motion Control, Automation, CANOpen, Profibus, MultiNet, DeviceNet, Deterministic Networks, Non-Deterministic Networks, Electromate, Distributed Control, UDP/IP,  Transmission Control Protocol (TCP/IP), EtherCAT, Ethernet/IP, ASCII

 

View a short video on Maxon’s state-of-the-art manufacturing center in Hungary

3 Minute YouTube Video

View a short video on Maxon’s state-of-the-art manufacturing center in Hungary.

Click on the link below to view the Maxon Motor Product Family.

http://www.electromate.com/products/?partner=1072297493

EDITORIAL CONTACT:
Warren Osak
sales@electromate.com
Toll Free Phone:   877-737-8698
Toll Free Fax:       877-737-8699
www.electromate.com

 

Tags:  maxon, maxon motor, maxon DC motor, Electromate, EC-i40, servo motor, BLDC motor, brushless motor, flat motor, pancake motor, automation, electric motor, motion control

 

 

 

maxon motor takes part in chase to catch up with a comet

After more than ten years of travel through space, the European space probe Rosetta has reached the comet Chury.  Three months from now, for the first time in the history of space travel, a lander will touch down on the surface of the four-kilometer-wide comet.  DC motors manufactured by maxon are part of this pioneering feat.

On August 6th, the big day finally arrived: After a journey of more than ten years, the Rosetta space probe reached the comet 67P/Churyumov-Gerasimenko, known as “Chury”.  The mission team at the European Space Agency (ESA) jumped for joy. F or the first time in the history of space travel, a probe has rendezvoused with a comet.  It will now orbit and map the comet and gather various types of data.  Already, the first images received have yielded astonishing new insights:  The comet Chury, which is four kilometers wide, is not round or oval, but instead looks like two rocks loosely stuck together.  At minus 70°C, the surface is much warmer than expected and the first information indicates that it is covered with a black layer of dust.

First choice for space missions

maxon motor takes part in chase to catch up with a comet – Rosetta Mission

maxon motor takes part in chase to catch up with a comet – Rosetta Mission

Rosetta will now gradually approach the comet, until a distance of only 10 kilometers separates them.  The most difficult part of the mission will take place in mid-November 2014, when the Philae lander is scheduled to touch down on Chury.  It will be the first controlled landing on a comet.  A real pioneering feat – and maxon motor is part of it, with a DC motor on board. This is not the first time that the micro drives from Switzerland have been the first choice for space missions.  SpaceX’s Dragon spacecraft, which transports cargo to the ISS station, also contains maxon motors.  The same holds true for the Mars rovers, which have been diligently traveling across the surface of the red planet for many years.

What is next?

On our Twitter channel @maxonmotor, we will keep you up-to-date with news from the Rosetta mission.

Click on the link below to view the Maxon Motor Product Family.

http://www.electromate.com/products/?partner=1072297493

EDITORIAL CONTACT:
Warren Osak
sales@electromate.com
Toll Free Phone:   877-737-8698
Toll Free Fax:       877-737-8699
www.electromate.com

 

Tags:  maxon, maxon motor, maxon DC motor, Electromate, EC-i40, servo motor, BLDC motor, brushless motor, flat motor, pancake motor, automation, electric motor, motion control

5 Tips for a Successful Servo Crossover

Reprint of March 27, 2014, article  by Josh Bellefeuille Sales Application Engineer at Kollmorgen

Kollmorgen Servo Motor FamilyThere are a number of situations that call for crossing over and replacing an existing motor with a newer servo.  These can include: product obsolescence, cost savings, lead time issues, or upgrading to newer technology.  The specifics of each application could lead to an endless number of important factors to consider.  In this post I will try to (briefly) identify those that are most common and their correct order of concern.

1. Healthy Motivations

Whatever the reason for a replacement situation, it is important to understand (and never forget!) the most important aspect of the task.  Mitigating risk.  A good replacement is one that minimizes the potential number of issues that may be experienced amidst the upgrade.  If great care is not taken to manage the potential risk of a replacement, a higher potential for system failure will be introduced.

This means cost should not be the controlling factor for replacements! A good replacement is one that minimizes risk AND reduces the cost of a system, versus reducing cost and accepting a higher potential for risk.

2. Axis Stability

Inertia matching is very important and often overlooked.  A servo replacement should have the same rotor inertia as the existing motor, or be as similar as possible.  The goal is to keep the stability of a system consistent when the new servo is introduced.  This of course assumes the existing system already has the desired stability.

If replacing a lower resolution system (i.e. tachometer, commcoder, or older resolver based system) it is often worthwhile to consider a high resolution sine-encoder feedback device, with resolution ≥ 220 counts per revolution (CPR). Doing so will give more flexibility when matching rotor inertias.  As a general rule, when improving feedback resolution with a high resolution device, the servo replacement should have at least one third of the inertia of the existing motor, though it’s preferred to have one half.  This method has been successfully applied in many applications.

3. Speed and Torque

Speed and torque matching is equally as important.  The performance of the replacement motor should meet or exceed the performance of the existing motor.  It is important to review the catalog values of each (i.e. continuous torque, rated speed) to ensure there are no shortcomings.

It is also critical to compare torque values over the entire speed range of each motor.  Comparing graphically may be a helpful exercise.  This can be done by comparing motor speed/torque curves and manually plotting like-values in a spreadsheet.  For example, at 1000 RPM the continuous torque for motor A = X Nm and motor B = Y Nm, and so on for the entire speed range.

4. Motor Dimensions

Though not critical to the performance of the motor, a retrofit situation becomes streamlined if the mounting dimensions of the replacement servo are identical to the existing motor.  The outline drawings of both motors should be reviewed to ensure consistency.  This is good practice even when replacing motors with industry standard mounts, like NEMA or IEC.  Standards typically have consistent pilot and bolt circle dimensions, but often do not maintain the same shaft dimensions.  Though you are replacing a NEMA 34 motor, one manufacturer’s definition may be drastically different than another’s!

5. Other Considerations

Is the motor the only part of the machine being replaced?  Typically a servo replacement will mean replacing the drives, cables, and in rare instances even the controller.  In this case the difference in motor windings can become a secondary consideration assuming manufacturer recommendations are followed.

However careful review is in order if the replacement motor is intended to be used with an existing drive.  Winding data (including motor constants: Kt and Ke), feedback device type and resolution, and cable pin-outs are just a few of the pieces that must be closely examined and matched.  Furthermore, different servo motor manufacturers often utilize different units and commutation methods for these critical parameters.  This can leave a lack of clear distinction between definitions and units of the motors being compared. As a supplementary resource, this helpful article further details some of the common specification inconsistencies that should be considered during a servo replacement.

Other aspects worthy of comparison may include overall envelope size, environmental ratings, holding brakes, bearing and load life, and specials. As hinted at earlier, this short article is in no way meant to serve as a comprehensive “checklist” of crossover guidelines.  Instead, I hope it serves as a high-level starting point for effective servo crossovers, in which risk is carefully considered and managed.

 

Tags:  Servo Motor, BLDC Motor, Electric Motor, Kollmorgen, Electromate, Servo, Automation

Live Webinar: Designing an Optimal Rotary Motion Joint for Robotics & Factory Automation

 

Space is limited. Reserve your Webinar seat now.

Register now to watch this webinar live or anytime after July 29, 2014.

Harmonic Drive® gearing is a dominant technology used in precision rotary motion applications in the field of robotics and factory automation as well as other industries such as machine tool, semiconductor, and medical equipment.   Basic principles and technical considerations will be reviewed leading to a discussion of rotary actuator joint design optimized for the application requirements while minimizing size & weight.

Webinar Content to Include:
-Overview of Harmonic Drive gearing principles and operation
-Technical considerations of joint performance
-Application design examples
-Design enhancements and customization

Title: Designing an Optimal Rotary Motion Joint for Robotics and Factory Automation
Date: Tuesday, July 29, 2014
Time: 11:00 AM – 12:00 PM EDT
Presenter: Bob Mullins, VP of Sales, Harmonic Drive LLC

 

Tags:  Harmonic Drive, Electromate, Strain Wave Gearing, Rotary Motion, Automation, Motion Control, Webinar, HD, Robotics, Factory Automation

 

 

Highly Dynamic DC Brushless Servo Motor – maxon’s EC-i40

Compact And Powerful

In automation and robotics, many applications are characterized by high energy and high torque at the same time.  Spatial restrictions also mean that drives must be short, have a long service life and be maintenance-free.  The newly redesigned EC-i motors from maxon motors offer solutions that fit these requirements perfectly.

Maxon EC-i40 Brushless Servo Motor

Maxon EC-i40 Brushless Servo Motor

These brushless DC motors have several key advantages: low inertia, minimal detent, robust bearings and compact construction.  The use of high-powered permanent magnets ensures high power density, providing great speed stability under load.

These motors are available in 40 mm diameter and in two lengths, namely 26 mm (50 Watt) and 36 mm (70 Watt).  The modular system with gearheads, encoders and controllers from the maxon delivery program offers a large number of possible combinations.

EC-i motors are ideally suited for applications that require maximum drive in a minimum space.  Typical areas of application are robotics, industrial automation and security technology. 

Click on the link below for more information.

http://www.electromate.com/products/?keyword=EC-i+40&d=102310

EDITORIAL CONTACT:
Warren Osak
sales@electromate.com
Toll Free Phone:   877-737-8698
Toll Free Fax:       877-737-8699
www.electromate.com

Tags:  maxon, maxon motor, maxon DC motor, Electromate, EC-i40, servo motor, BLDC motor, brushless motor, flat motor, pancake motor, automation, electric motor, motion control

 

 


Electromate’s Website

Archives

Subscribe to this blog by entering your email address below.

Join 357 other followers

Hey there! Electromate is using Twitter.

Presentation Playlist

Flickr Photos

Motion & Automation Controllers

Stepper Motors & Drives

Servo Motors & Drives

Servo Motors

Servo Drives

Stepper Motors

Stepper Drives

Positioning Systems & Actuators

Motion Control Made Simple Textbook

Power Transmission Products (2)

More Photos

Follow

Get every new post delivered to your Inbox.

Join 357 other followers